Algebraic and Numerical Algorithms
نویسندگان
چکیده
Arithmetic manipulation with matrices and polynomials is a common subject for algebraic (or symbolic) and numerical computing. Typical computational problems in these areas include the solution of a polynomial equation and linear and polynomial systems of equations, univariate and multivariate polynomial evaluation, interpolation, factorization and decompositions, rational interpolation, computing matrix factorization and decompositions, including various triangular and orthogonal factorizations such as LU, PLU, QR, QRP, QLP, CS, LR, Cholesky factorizations and eigenvalue and singular value decompositions, computation of the matrix inverses, determinants, Smith and Frobenius normal forms, ranks, characteristic and minimal polynomials, univariate and multivariate polynomial resultants, Newton’s polytopes, and greatest common divisors and least common multiples as well as manipulation with truncated series and algebraic sets. Such problems can be solved based on the error-free algebraic (symbolic) computations with infinite precision. This demanding task is achieved in the present day advanced computer library GMP and computer algebra systems such as Maple and Mathematica by employing various nontrivial computational techniques such as the Euclidean algorithm and continuous fraction approximation, Hensel’s and Newton’s lifting, Chinese Remainder algorithm, elimination and resultant methods, and Gröbner bases computation. The price for the achieved accuracy is the increase of the memory space and computer time supporting the computations.
منابع مشابه
New Solutions for Singular Lane-Emden Equations Arising in Astrophysics Based on Shifted Ultraspherical Operational Matrices of Derivatives
In this paper, the ultraspherical operational matrices of derivatives are constructed. Based on these operational matrices, two numerical algorithms are presented and analyzed for obtaining new approximate spectral solutions of a class of linear and nonlinear Lane-Emden type singular initial value problems. The basic idea behind the suggested algorithms is basically built on transforming the eq...
متن کاملNumerical solution of Voltra algebraic integral equations by Taylor expansion method
Algebraic integral equations is a special category of Volterra integral equations system, that has many applications in physics and engineering. The principal aim of this paper is to serve the numerical solution of an integral algebraic equation by using the Taylor expansion method. In this method, using the Taylor expansion of the unknown function, the algebraic integral equation system becom...
متن کاملNumerical Solution of Algebraic Riccati Equations
Society for induStrial and applied MatheMaticS Numerical Solution of Algebraic Riccati Equations Dario A. Bini, Bruno Iannazzo, and Beatrice Meini Fundamentals of Algorithms 9 This concise and comprehensive treatment of the basic theory of algebraic Riccati equations describes the classical as well as the more advanced algorithms for their solution in a manner that is accessible to both practit...
متن کاملNumerical Methods and Software for Sensitivity Analysis of Diierential-algebraic Systems
In this paper we present some new algorithms and software for sensitivity analysis of diierential-algebraic equation (DAE) systems. The algorithms have several novel features which are described and analyzed. The codes, which are extensions of DASSL and DASPK, are easy to use, highly eecient, and well-suited for large-scale problems.
متن کاملNumerical solution of higher index DAEs using their IAE's structure: Trajectory-prescribed path control problem and simple pendulum
In this paper, we solve higher index differential algebraic equations (DAEs) by transforming them into integral algebraic equations (IAEs). We apply collocation methods on continuous piece-wise polynomials space to solve the obtained higher index IAEs. The efficiency of the given method is improved by using a recursive formula for computing the integral part. Finally, we apply the obtained algo...
متن کاملAnalytical and Verified Numerical Results Concerning Interval Continuous-time Algebraic Riccati Equations
This paper focuses on studying the interval continuous-time algebraic Riccati equation A∗X + XA + Q − XGX = 0, both from the theoretical aspects and the computational ones. In theoretical parts, we show that Shary’s results for interval linear systems can only be partially generalized to this interval Riccati matrix equation. We then derive an efficient technique for enclosing the united stable...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008